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Abstract 

Measuring environmental variables at appropriate temporal and spatial scales remains 

a significant challenge in ecological research. New developments in wireless sensors 

and sensor networks will free ecologists from a wired world and revolutionize our ability 

to study ecological systems at relevant scales. Sensor networks can, however, also 

analyze and manipulate the data they collect, which moves data processing from the 

end user to the sensor network itself. Such embedded processing will allow sensor 

networks to perform data analysis procedures, identify outlier data, alter sampling 

regimes, and ultimately control experimental infrastructure. We illustrate this capability 

using a wireless sensor network, the Sensor Web, in a study of microclimate variation 

under Chihuahuan Desert shrubs. Using Sensor Web data we developed simple 

analytical protocols for assessing data quality "on-the-fly" that can be programmed into 

sensor networks.  The ecological community can influence the development of 

environmental sensor networks by working across disciplines to infuse new ideas into 

sensor network development.
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Introduction 

Ecologists struggle to measure complex environmental variables that change 

rapidly in space and time. To date, environmental monitoring and measurement have 

been limited by methodology, particularly the types of field-based sensors available to 

ecologists, their costs, and the constraints imposed by the need to physically wire 

sensors to stationary data loggers.  These constraints lead to suboptimal placement of a 

few sensors within reach of data loggers rather than in locations that optimize 

measurement of the variable of interest. The development of small, inexpensive 

wireless sensors (e.g., Johnston et al. 2004) coupled with the widespread availability of 

low-cost wireless data transmission infrastructure (e.g., Peterson et al. 1995, Atkins et 

al. 2003) will free us from a wired world and revolutionize our ability to measure 

environmental variables at appropriate spatial and temporal scales (Martinez et al. 

2004, Porter et al. 2005).  

Although ecologists are increasingly aware of the power of sensor networks and 

are involved in the development of new environmental sensors (Palmer et al. 2004), 

discussion thus far has focused on how such networks will increase our ability to gather 

data at spatial and temporal scales appropriate for understanding regional ecological 

phenomena (Porter et al. 2005). Although environmental sensor networks will 

revolutionize our ability to measure and monitor the environment; they simultaneously 

pose huge data analysis and management challenges new to most ecologists. Indeed, 

sensor networks have the capacity to collect and store data at rates that can overwhelm 

the analytical capability of many users. To date, little attention in the ecological literature 

has been devoted to explaining the capability of sensor networks to not only collect 
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mind-boggling amounts of data, but also to process, analyze and summarize data in 

passive ecological monitoring contexts and in active experimental settings. 

One approach to this data richness problem is to conceptually reduce a sensor 

network and associated cyberinfrastructure to three simplified components: (1) the 

sensor, which is measurement specific, (2) a sensor network that gathers and transmits 

sensor data, and (3) the end user who analyzes and interprets the data with a particular 

question in mind. All subcomponents are linked by cyberinfrastructure, including 

hardwire transmission networks (e.g., the Internet), computers, data archives, and 

analytical and graphical software. In our stylized decomposition the sensor and the user 

are problem specific, whereas the sensor network is generalizable across different 

applications.  However, although we traditionally think of data processing as occurring 

at the user end of the transmission sequence, many sensor networks have the capacity 

for embedded computing, an important capability that should be exploited by ecologists 

(Delin and Jackson, 2000, Estrin et al. 2003).  Taking advantage of this technology may 

require shifts in experimental design towards distributed and more real time data 

screening and analysis, and ultimately adaptive experimentation (Cook et al. 2005), 

hypothesis formulation, and testing.  In short, the network itself produces knowledge 

from data (Delin et al. 2005).  

In this article, we illustrate the potential power of sensor networks to function 

beyond the acquisition of large, complex data streams. To do so, we briefly present 

results from an ongoing experiment at the Sevilleta Long-term Ecological Research 

(LTER) site that uses a wireless sensor network, the Sensor Web, to measure 

microclimate beneath different species of native desert shrubs. Specifically, we describe 
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the conceptual framework and experimental context in which we are using wireless 

sensor technology at the Sevilleta.  We then highlight the fundamentals of Sensor Web 

technology, and describe how the sensor network itself can be used for data quality 

assurance and quality control (QA/QC), data manipulation, and eventually actuation – 

the explicit control of experimental infrastructure based on in-situ data processing.   

Islands of fertility 

Aridland ecosystems worldwide are undergoing dramatic changes in response to 

a variety of environmental drivers, including rising levels of atmospheric CO2 (Archer et 

al. 1995), increased climate variability (Loik et al. 2004), increased atmospheric nitrogen 

deposition (Fenn et al. 2003), overgrazing (Archer et al. 1988), and changes in natural 

disturbance regimes (van Auken 2000). One consequence of environmental change in 

many semiarid regions worldwide is desertification, degradation from the conversion of 

C4-dominated grassland to C3-dominated woodland (Geist and Lambin 2004). 

Desertification has significant ecological consequences including altered surface and 

subsurface hydrology (Bhark and Small 2003), reduced biodiversity (Briggs et al. 2005), 

reduced capacity to retain nutrients (Welter et al. 2006), altered carbon storage capacity 

(Jackson et al. 2002) and altered soil resource heterogeneity (Schlesinger et al. 1990, 

1996) as resources are increasingly concentrated in “islands of fertility” beneath shrub 

canopies. 

Aridland plant communities are characterized by relatively distinct patches of 

vegetation with intervening bare areas of soil (Schade et al. 2004, Peters et al. 2006, 

Fig 1a). The original island of fertility model focused on how the local distribution of soil 

resources changed from relatively uniform to being increasingly concentrated beneath 
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plant canopies. In fact, soil resources are significantly higher beneath grass and shrub 

canopies compared to bare soil patches at the Sevilleta (Keift et al. 1998). Shrub 

encroachment not only alters the distribution of soil resources but it may also affect local 

microclimate. At the Sevilleta we asked the question, “Are all islands of fertility equal?” 

We were particularly interested in determining how microclimate differed beneath three 

common native shrub species, a semi-evergreen shrub – creosotebush (Larrea 

tridentata), a small deciduous tree - honey mesquite (Prosopis glandulosa var. 

torreyana), and an evergreen shrub  - one-seeded juniper (Juniperus monosperma). 

Although this is a relatively straightforward experiment, we chose this design to learn 

more about how different species modify their local environments, and to assess the 

longevity and durability of an environmental sensor network in a relatively harsh 

environment. In the process we gathered extensive data streams that can be used as 

test beds for embedded data harvesting algorithms and estimation of data error rates 

within a long-running sensor network.  

Sensor Web 

Advances in science often begin with the development of new technologies and 

instrumentation. The integration of 'off-the-shelf' technologies, including 

microcomputers, sensors, integrated radio chips, and the Internet, allow the 

development of instrumentation that can scale across space and time, introducing a 

new paradigm to how we instrument and analyze the environment. The Sensor Web for 

Ecological Explorations in Terrestrial Systems (SWEETS) project is a collaboration 

between the Sevilleta LTER and NASA's Jet Propulsion Laboratory (JPL) in which we 



 7 

are exploring the use of an in situ sensor network, the Sensor Web, in ecological 

research to measure canopy microclimate under different species of desert shrubs.  

The Sensor Web, developed at JPL (http://sensorwebs.jpl.nasa.gov/), is an 

amorphous network of spatially distributed sensor platforms (pods) that wirelessly 

communicate with each other (Fig 1b).  This amorphous architecture is unique since it is 

both synchronous and router-free, making it distinct from Internet-inspired network 

schemes.  The architecture allows every pod to share data with every other pod 

throughout the network at each measurement cycle. These data sharing protocols in the 

Sensor Web provide a powerful system for embedded data processing within the sensor 

network itself. 

To measure microclimate variation at the Sevilleta, in October 2003 we placed 

three Sensor Web pods (v3.1) each in randomly selected open areas, and under the 

east side canopy of three individuals of each shrub species (12 pods in total) arrayed 

along a 300 m transect. An additional pod served as a data relay and a 14th pod served 

as the mother pod which is connected to a laptop that contains the database and serves 

as a bidirectional portal into the system via the Internet.  Sensors on each pod measure 

soil temperature at 1 and 10 cm depths, soil moisture at 10 cm depth, relative humidity, 

air temperature and light. After each measurement interval (5 minutes) the pods 

wirelessly relay their data to all neighboring pods, which allows all pods to construct a 

synchronous picture of all measurements across the network.  SWEETS data are 

available at http://sev.lternet.edu/research/SWEETS/index.html. 

Microclimate differences 
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A complete analysis of microclimate differences between shrubs species and 

open areas is not possible or appropriate here. Rather, we provide example data 

streams (Fig 2a,b) typical of summer and winter conditions, and an analysis of three 

midsummer microclimate variables (Fig 3) to illustrate the data generated by the Sensor 

Web (including occasional outlier data), and the potential for using sensor networks in 

ecological research. Clear differences in soil temperature at two depths and light 

availability occur between shrub canopies and open areas. In both winter and summer, 

daily temperature oscillations in bare areas are greater than under creosotebush. 

Surprisingly, maximum soil temperatures beneath some shrubs are actually higher than 

in open areas. This results from differences in soil albedo within different 

microenvironments.  Beneath shrubs the soil is covered by organic matter, which 

darkens the surface and increases heat absorption, particularly during mid-summer. As 

a result, average daily maximum shallow soil temperature under juniper during July was 

significantly higher than in open areas or under the canopy of creosotebush and to a 

lesser extent under mesquite (Fig 3). Nighttime temperature minima were slightly lower 

under shrubs than in open areas, and maximum daily light levels were lowest under 

creosotebush. Clearly, not all resource islands are equal which likely has implications 

for the distribution and abundance of plant and animal species associated with resource 

islands in aridland environments. 

Post hoc analysis of data quality from a large, continuous, ongoing data stream is 

challenging. Moreover, the deployment of larger and more complex sensor networks will 

yield huge and ever-growing data sets which will increase the need to automatically 

screen and analyze large data sets in efficient and timely ways. Such challenges 
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suggest the need for analytical solutions that automatically perform statistical analyses 

on the fly. These features create the opportunity for validation of ecological hypotheses 

in real time by the instrument itself, shifting the burden of data analysis and its logistical 

costs and delays away from the researcher and onto the sensor network. For example, 

because it is a temporally synchronized, spatially distributed instrument, the Sensor 

Web has a unique global data sharing protocol among pods that allows for analytical 

procedures to be easily programmed into each pod so that data quality can be 

assessed during every measurement interval and data summaries can be generated at 

any desired measurement interval.  

Embedded processing 

In the future, large sensor networks will measure multiple environmental 

variables at short time intervals and operate over vast areas for years. Although the 

Sensor Web cluster deployed at the Sevilleta has only a modest number of pods, 

research platforms, such as NEON, envision sensor networks with hundreds or even 

thousands of sensors. As sensor networks grow to offer better spatial coverage and 

include remote areas, problems with data quality assessment, storage, retrieval and 

manipulation will increase quickly outstripping traditional human resources dedicated to 

offline analysis. Therefore, shifting portions of data analysis from the user to the network 

itself will be not just a matter of convenience, but a very practical necessity  (Delin and 

Jackson, 2000; Delin 2002, Larkey et al. submitted). 

 A simple first step in data processing is to identify and eliminate erroneous 

sensor readings which may occur for many reasons including the occasional sensor 

measurement or data transmission error. Even if data error rates are very small (e.g., 
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<0.001%), large sensor networks with frequent data acquisition protocols will generate 

potentially hundreds or thousands of error measurements annually.  For example, the 

12-pod Sensor Web array at the Sevilleta makes six environmental measurements at 

each node every five minutes yielding more than 12.6 million data points per year. Even 

if data error rates are exceptionally low, say 1 in 10,000 then about 1,260 data values 

are potentially erroneous each year. The number of data errors will only increase with 

the size and complexity of a sensor network. Such small error frequencies could 

potentially affect overall data quality, possibly creating erroneous action in autonomous 

systems, as well as reduce the reliability of comparative analyses.  

One procedure to eliminate errors is to create an expected probability distribution 

of the sensor measurement variables. The problem of adopting such a strategy with 

environmental data is that most data distributions, for example air temperatures or soil 

water content, change over daily and seasonal cycles. However, a simple and practical 

way to obtain a more or less stationary short-term estimate amenable to standard 

statistical inference is to calculate differences among the same measurement variables 

(e.g., temperature) that are recorded at each time interval.  In most sensor arrays, many 

environmental variables being measured are spatially coherent over relatively large 

scales, and statistical differences between neighboring sensors are small and their 

variance bounded. Errors, on the other hand, usually show much larger variation than 

correct data values. This translates into well behaved probability distributions for the 

differences between measurements of the same variable (Box 1).  Such data properties 

permit the use of an effective data quality assurance scheme that is simple enough to 

be embedded within a sensor network where all data are shared at each measurement 
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interval. Events that do not fall in the body of the distribution by some predetermined 

level of statistical confidence can be excluded and identified as errors. Missing values 

can also be inferred in a similar way (Larkey et al. submitted).  In practice such 

difference distributions can be constructed for each measured quantity and each pair of 

neighboring sensors, or for averages of multiple sensors in comparable habitats. In this 

way, sensor networks can be configured to produce knowledge from the raw data, 

rather than just providing a passive stream of data to the end user.   

Data analysis design choices must be balanced between the simplest need for 

data quality assurance, network memory and processing capabilities, and further 

treatment of data.   For example, the simplest quality assurance algorithm demands no 

storage but does require several nearby neighbors, as well as complete data sharing 

among sensor nodes at each measurement interval.  It computes the ensemble of 

differences between all neighbors of a given sensor node and then determines if a given 

difference is an outlier by comparing it to the average and standard deviation (see Box 

1) of difference values.  If it is determined to be anomalous the error is assigned to the 

corresponding measurement and archived with that information in the database.  

This strategy for data quality assurance, a vital first step in data processing, 

yields a constant statistical summary which can be reported and stored in a permanent 

database along with the raw data. This allows immediate statistical comparisons of data 

among contrasting environments or time intervals, or between treatment and control 

areas in ecological experiments. The logic of shifting data analysis to the network allows 

the sensor network not only to detect naturally anomalous events corresponding to 

errors, but also to identify important environmental dynamics, such as rainfall pulses in 



 12 

arid environments, which lead to rapid, spatially coherent changes in multiple 

environmental variables (Potts et al. 2006). Additional algorithms based on quality 

assurance calculations can then be implemented to increase or decrease sampling 

frequency in response to environmental triggers. Such adaptive sampling algorithms 

can be used to reduce data collection rates at times when little change is occurring, and 

then rapidly increase it whenever necessary to capture changes in environmental 

conditions at high spatial and temporal resolution. It can also be used to trigger 

sampling whenever conditions are judged to be sufficiently interesting (Delin 2002).   

One of the least discussed aspects of sensor networks in the ecological literature 

is the potential for actuation, the use of autonomous determination of physical changes 

in the environment to control experimental infrastructure. For example, at the Sevilleta 

LTER we recently established a multifactor environmental change experiment in which 

we manipulate nighttime temperatures, winter rainfall, and nitrogen deposition to 

determine their individual and combined effects on creosotebush encroachment into 

grassland (Fig. 4). Our nighttime warming treatment is imposed by using lightweight 

aluminum fabric shelters mounted on rollers similar to a window shade that are drawn 

across the plots each night to reduce heat loss and elevate nighttime air temperatures. 

The shelters roll up again each morning. We plan to use our error detection and data 

summary algorithms described here in this experiment to summarize nightly treatment 

effects and generate statistical summaries of outlier values that we can use to detect 

and quickly repair deployment failures. Ultimately, we plan to use embedded processing 

to calculate statistical differences among treatments and eventually develop in situ 
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algorithms to deploy the warming apparatus and to automate the winter rainfall 

treatments. 

Outlook 

Wireless sensor networks have tremendous potential in environmental research. 

Ecologists are becoming increasingly aware of the capability of these networks to 

collect multiple point measures of ecological variables at high temporal frequencies 

across vast spatial scales. Development and use of inexpensive, long-lasting sensor 

networks will increase our ability to conduct research at scales relevant to 

environmental grand challenges (NRC 2001, 2003). Yet environmental sensor networks 

offer a far greater potential than simply switching from a wired to a wireless world. 

Wireless sensor networks with embedded microprocessors can be programmed to 

assess data quality, modify sampling regimes, and ultimately activate ecological 

infrastructure. The development and optimal use of such sensor networks will require a 

multi-disciplinary effort between ecologists, engineers, computer scientists and 

statisticians to take full advantage of a technology that is likely to revolutionize not only 

data collection, but also data processing, analysis and manipulation of experimental 

infrastructure. Because sensor network technology is still maturing, the ecological 

community is in a unique position to influence the growth of this technology by working 

across disciplines to infuse new ideas into wireless sensor network development.  
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List of Figures 

Figure 1. (A) Desert grassland vegetation with scattered creosotebush showing the 

distribution of vegetation, shrub islands and bare soils characteristic of aridland 

ecosystems. (B) Sensor Web v3.1 pod underneath a juniper tree (see 

http://sev.lternet.edu/research/SWEETS/index.html for a site map and access to Sensor 

Web data).   

 

Figure 2. Typical Sensor Web data streams from the Sevilleta LTER site in New Mexico 

during a five-day period in a) winter, and in b) summer. 

 

Figure 3. Average daily ranges (minimum, maximum) of light flux, air temperature, and 

shallow soil temperature under creosotebush, mesquite, and juniper, and bare soil for 

July 2004 at the Sevilleta LTER site in New Mexico.  

 

Figure 4. Photograph of a warming apparatus in a new nighttime warming, winter 

rainfall, N-deposition experiment at the Sevilleta LTER site in New Mexico. 
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Figure 4. 
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Box 1. In situ error detection in distributed sensor networks. 

In any experiment, errors in sensor measurement or data transmission occur 

occasionally. In many cases erroneous readings fall within the normal range of daily or 

seasonal variation and may prove difficult to identify. Box 1, Figure 1 (top right) shows a 

rare data transmission error from a Sensor Web pod at the Sevilleta LTER site. It is 

possible to embed algorithms in a pod’s processing unit that compare data values 

among sensors, giving a basis for error detection and for the inference of missing 

readings. As a consequence, outlier values can be detected and flagged when they 

occur, and in the process, Sensor Web data are analyzed and summarized on-the-fly. 

To do this efficiently, and to accommodate the fact that average values change 

throughout the day and across seasons, we estimate the probability distribution of 

differences between a given quantity (e.g. air temperature) measured at adjacent pods 

P(ΔT)  (see Box Figure 1, bottom right). Measurement errors are identified as point 

failures that occur with a small probability and typically correspond to large and sudden 

temperature differences of tens of degrees or more. These can be identified and 

eliminated at a chosen level of confidence C (say 99%) by standard statistical tests.  

Using inferred probability distributions from data we determine the probability of 

observing a difference in measurements between the pod in question and its neighbors 

that is larger (in absolute value) than the value observed. If this total probability is less 

than C the measurement is classified as anomalous, otherwise the datum is accepted 

and stored in the database.  As new data values are accepted they can be used to 

update the probability distribution of valid values on-the-fly. Missing readings at a 

sensor might also be inferred through knowledge of those of its neighboring pods and 
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the statistical distribution of their differences can also be calculated and noted in the 

database (Larkey, et al., 2006).  
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List of Figures, Box 1 

Box 1, Figure 1. A data transmission anomaly (top, red circle) in the air temperature 

measurements at one of the Sensor Web pods can be identified and eliminated via 

comparison to the measurements transmitted by nearest-neighbor pods (left). The 

anomalous reading is identified as an outlier (bottom right) in the distribution of 

differences between the readings at a pod and those of its neighbors at a 

predetermined level of statistical confidence (Larkey, et al. submitted). 
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Box 1, Figure 1. 

 

 

 
 
 
 
 


